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Abstract
We discuss some recent results on the statistical mechanics approach to dense
granular media. In particular, by analytical mean field investigation we derive
the phase diagram of monodisperse and bidisperse granular assemblies. We
show that ‘jamming’ corresponds to a phase transition from a ‘fluid’ to a ‘glassy’
phase, observed when crystallization is avoided. The nature of such a ‘glassy’
phase turns out to be the same as found in mean field models for glass formers.
This gives quantitative evidence for the idea of a unified description of the
‘jamming’ transition in granular media and thermal systems, such as glasses.
We also discuss mixing/segregation transitions in binary mixtures and their
connections to phase separation and ‘geometric’ effects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An important conceptual open problem concerning granular media is the absence of an
established theoretical framework where they might be described. Several methods and
theories, many of them reviewed in this volume, have been put forward in recent years.
Edwards [1, 2], in particular, proposed first that a statistical mechanics approach might be
feasible to describe dense granular media. He introduced the hypothesis that time averages
of a system, exploring its mechanically stable states subject to some external drive (e.g.,
‘tapping’), coincide with suitable ensemble averages over its ‘jammed states’.

The statistical mechanics approach to dense granular media was later supported by
observations from experiments [5, 7] and simulations [13, 11] which suggested that when
the system approaches stationarity during its ‘tapping’ dynamics, its macroscopic properties
are univocally characterized by a few control parameters and do not depend on the system initial
configuration or dynamical protocol. Of course, the open problem remains to understand and
predict the features of the ‘suitable’ ensemble average for the system. This is a very important
current research issue in granular media which has recently seen interesting contributions from
both computer simulations and experiments.
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We discuss here the basic ideas in the statistical mechanics of dense granular media at
stationarity and recent results about its extensions. A central concept in this approach is the
configurational entropy, Sconf = ln �, where �(E, V ) is the number of mechanically stable
states corresponding to the volume V and energy E . From Sconf conjugated thermodynamic
parameters can be derived: the compactivity, X−1 = ∂Sconf/∂V , and the configurational
temperature T −1

conf = ∂Sconf/∂ E . The ‘thermodynamic’ parameters should completely
characterize the macroscopic properties of the system, as much as pressure or ordinary
temperatures in gases. Methods have been developed, thus, to measure these parameters
by exploiting different techniques. In the stationary regime we consider here, for instance,
one can show that Tconf can be related to an equilibrium fluctuation–dissipation (FD)
theorem [28, 29, 11, 30, 31]. As reviewed in section 2, this allows a simple evaluation of
Tconf from measures, for example, of the sample bulk density (or height) and its fluctuations,
taken in the stationary regime of, e.g., a tap dynamics. The knowledge of the system distribution
function and its parameters can be exploited to depict a first theoretical comprehensive picture
of the vast phenomenology of powders, ranging from their phase diagrams to segregation
properties. This was partially accomplished in [11, 34, 36].

A different approach [25, 26, 13] to measure an ‘effective temperature’, Tdyn, in granular
media which are far from stationarity is based on the out-of-equilibrium extension of the
fluctuation–dissipation theorem discovered in glassy theory [23, 22]. Interestingly, it was
shown [26, 13, 31] that in the limit of small shaking amplitudes Tdyn coincides with the above
‘configurational temperature’, Tconf .

We review below the basic ideas in the statistical mechanics of dense monodisperse
granular media at stationarity and in such a framework derive their ‘phase diagram’ in the
mean field approximation. This allows us to discuss the nature of jamming in non-thermal
systems [9, 10] and the origin of its close connections to glassy phenomena in thermal ones [2].
As an extension and a further application of this approach, we also consider the intriguing
phenomenon of segregation in bidisperse mixtures.

2. Statistical mechanics of dense granular media

In this section we summarize the essential ideas in the statistical mechanics of dense granular
media [4, 2]. These are strongly dissipative systems not affected by temperature, because
thermal fluctuations are usually negligible. Therefore, in the absence of driving, the usual
temperature of the external bath can be considered zero and these media called non-thermal.
As the system cannot explore its phase space (unless perturbed by external forces, such as
shaking or tapping) it is frozen, at rest, in its mechanically stable microstates (see figure 1).

In the statistical mechanics of powders introduced by Edwards [1] it is postulated that
the system at rest (i.e., not in the ‘fluidized’ regime) can be described by suitable ensemble
averages over its ‘mechanically stable’ states. The issue is to individuate the probability, Pr ,
to find the system in its generic mechanically stable state r . A possible approach to find Pr

stems [11] from the maximization of the system entropy,

S = −
∑

r

Pr ln Pr (1)

with the macroscopic constraint, in the case of the canonical ensemble, that the system average
energy, E = ∑

r Pr Er , is given. This assumption leads to the Gibbs result:

Pr ∝ e−βconf Er (2)

where βconf is a Lagrange multiplier, called the inverse configurational temperature, enforcing
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Figure 1. The present models for granular media are subject to a Monte Carlo dynamics made
up of ‘tap’ sequences. A ‘tap’ is a period of time, of length τ0 (the tap duration), during which
the system evolves at a finite bath temperature T� (the tap amplitude); after each ‘tap’ the system
evolves at T� = 0 and reaches a mechanically stable state in its exploration of the configuration
space.

the above constraint on the energy:

βconf = ∂Sconf

∂ E
Sconf = ln �(E). (3)

Here, �(E) is the number of mechanically stable states with energy E . Thus, summarizing,
the system at rest has Tbath = 0 and Tconf = β−1

conf �= 0. Analogously, by assuming that the
system volume, V , is given (as in Edwards’ original approach [1, 2]), similar calculations lead
to Pr ∝ e−Vr /λX , where Vr is the volume of microstate r and X = λ−1(∂Sconf/∂V )−1 is called
the compactivity.

These basic considerations, to be validated by experiments or simulations, settle a
theoretical statistical mechanics framework to describe granular media. Consider, for
definiteness, a system of monodisperse hard spheres of mass m. In the whole configuration
space �Tot of the system, we can write Edwards’ generalized partition function as

Z =
∑

r∈�Tot

exp(−HHC − βconfmgH ) · �r (4)

where HHC is the hard-core interaction between grains, mgH is the gravity contribution to the
energy (H is particle height), and the factor �r is a projector on the space of ‘mechanically
stable’ states �: if r ∈ � then �r = 1 else �r = 0.

As well as in usual equilibrium ‘thermal’ statistical mechanics, it is straightforward to
verify that in the present approach a ‘standard’ (i.e., not ‘out-of-equilibrium’) fluctuation–
dissipation (FD) theorem holds, linking at stationarity, for instance, the system average energy,
E , to its fluctuations, �E2:

− ∂ E

∂βconf
= �E2. (5)

Usefully, the integration of such an equilibrium FD relation may provide direct access to βconf

from energy (or density, etc) data measured at stationarity [11]:

βconf(E) = β0
conf −

∫ E

E0

(�E2)−1 dE . (6)

Summarizing, such an ‘equilibrium’ statistical mechanics approach is based on the
hypothesis that at stationarity the system properties do not depend on the details of the
dynamical history. This has to be checked by computer simulations and experiments. The
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next step is to verify that a few macroscopic parameters (such as energy or density, etc) are
completely characterizing the status of the system, i.e., that a ‘thermodynamic’ description is
indeed possible. In such a case, βconf can be derived, for example, from equation (6). Finally,
one must check that time averages obtained using such a dynamics compare well with ensemble
averages over the distribution equation (2).

In the following sections we discuss some recent results [27, 11] about schematic models
validating and generalizing Edwards’ statistical mechanics approach. In particular, we show
by mean field analytical calculations that granular media undergo a phase transition from a
(supercooled) ‘fluid’ phase to a ‘glassy’ phase, when their crystallization transition is avoided.
The nature of such a ‘glassy’ phase turns out to be the same as found in mean field models
for glass formers: a discontinuous one-step replica symmetry breaking phase preceded by a
dynamical freezing point. These results are supported by Monte Carlo (MC) ‘tap dynamics’
simulations which, in the region of low MC shaking amplitudes, show a pronounced jamming
similar to the one found in experiments on granular media. As an application to mixtures we
also discuss segregation/mixing phenomena in these systems.

3. Hard sphere schematic models for granular media

The simplest model for granular media we considered [11] is a monodisperse system of hard
spheres of equal diameter a0 = 1, subjected to gravity. In order to check the above statistical
mechanics scenario, we consider now a simplified version of such a model, where we constrain
the centres of mass of the spheres to move on the sites of a cubic lattice (see inset in figure 3).
The Hamiltonian of the system is

H = HHC({ni}) + gm
∑

i

ni zi , (7)

where the height of site i is zi , g = 1 is the gravity acceleration, m = 1 the grain mass,
ni = 0, 1 the usual occupancy variable (i.e., ni = 0 or 1 if site i is empty or filled by a grain)
and HHC({ni}) a hard-core interaction term that prevents the overlapping of nearest-neighbour
grains (this term can be written as HHC({ni }) = J

∑
〈i j〉 ni n j , where the limit J → ∞ is

taken).
The grains are subject to a dynamics made up of a sequence of Monte Carlo ‘taps’ (see

figure 1): a single ‘tap’ [8] is a period of time, of length τ0 (the tap duration), where particles
can diffuse laterally, upwards with probability pup ∈ [0, 1/2], and downwards with probability
1 − pup. When the ‘tap’ is off grains can only move downwards (i.e., pup = 0) and the system
evolves with pup = 0 until it reaches a blocked configuration (i.e., an ‘inherent state’) where
no grain can move downwards without violating the hard-core repulsion. The parameter pup

has an effect equivalent to keeping the system in contact (for a time τ0) with a bath temperature
T� = mga0/ ln[(1 − pup)/pup] (called the ‘tap amplitude’). The properties of the system
are measured when this is in a blocked state. Time averages, therefore, are averages over the
blocked configurations reached with this dynamics. Time t is measured as the number of taps
applied to the system.

Under such a tap dynamics the systems reaches a stationary state where the statistical
mechanics approach to granular media can be tested, and particularly the Edwards hypothesis
can be verified by comparing time averages to ensemble averages of equation (2).

3.1. Stationary states and time averages

During the tap dynamics, in the stationary state, the time average of the energy, E , and its
fluctuations, �E2, are calculated.
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Figure 2. The time average of the energy, e = E , and (inset) its fluctuations, �e2 = �E
2
,

recorded at stationarity during tap dynamics, as a function of the tap amplitude, T� , in the 3D
lattice monodisperse hard-sphere model. Different curves correspond to sequences of taps with
different values of the duration of each single tap, τ0.
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Figure 3. Energy fluctuations �e2 plotted as a function of the energy e. The symbols •, � and

are time averages, E and �E
2
, obtained with different tap dynamics in figure 2. The symbols◦ are independently calculated ensemble averages, 〈E〉 and 〈�E2〉, according to equation (2). The

collapse of the data obtained with different dynamics shows that the system stationary states are
characterized by a single thermodynamic parameter. The agreement with the ensemble averages
shows the success of Edwards’ approach to describe the system macroscopic properties.

Figure 2 shows E (main frame) and �E
2

(inset) as functions of the tap amplitude, T� (for
several values of the tap duration, τ0). Since sequences of taps with the same T� and different

τ0 give different values of E and �E
2
, it is apparent that T� is not the right thermodynamic

parameter. On the other hand, if the stationary states are indeed characterized by a single
thermodynamic parameter the curves corresponding to different tap sequences (i.e. different

T� and τ0) should collapse onto a single master function, when �E
2

is parametrically plotted
as a function of E . This is the case in the present model, where the data collapse is in fact
found and shown in figure 3. This is a prediction that could be easily checked in real granular
materials.

A technique to derive from raw data the thermodynamic parameter βfd conjugated to E
(apart from an integration constant, β0) is through the usual equilibrium fluctuation–dissipation
relation of equation (5). By integrating equations (5), (6) is obtained and βfd − β0 can
be expressed as a function of E or (for a fixed value of τ0) as a function of β� = 1/T�:
βfd = βfd(β�) (the constant β0 can be determined as explained in [11]). Now, we use the
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Figure 4. The time average E and the ensemble average over the distribution equation (2) 〈E〉,
plotted respectively as a function of Tfd and Tconf (in units mga0), in the 3D monodisperse hard-
sphere system under gravity described in the text. Symbols are as in figure 3. Time averages
over the tap dynamics and Edwards’ ensemble averages coincide. Lower inset: the temperature
Tfd ≡ Tconf defined by equation (5) as a function of T� (in units mga0) for τ0 = 500, 10, 5 MCSs
(from top to bottom). The straight line is the function Tconf = T� .

name βfd for the thermodynamic parameter conjugated to E because we can conclude that
βfd = βconf only when the average over the tap dynamics and the ensemble average with
equation (2) coincide. Thus, even though we have just shown that a ‘thermodynamic’, i.e.,
a statistical mechanics, description is indeed possible, we have still to show that specifically
the distribution of equation (2) holds. This is accomplished in the next section and interesting
novelties will be shown in section 5.

3.2. Ensemble averages

Summarizing, in section 3.1 we have found that the fluctuations of the energy in the stationary
state depend only on the energy, E , and not on the past history. More generally, we found [11]
that all the macroscopic quantities we observed depend only on the energy, E , or on its
conjugate thermodynamic parameter, βfd, thus the stationary state can be genuinely considered
a ‘thermodynamic state’.

We show now that ensemble averages based on the theoretical distribution of equation (2)
coincide with time averages over the tap dynamics. We compare, for instance, the time
average of the energy, E(βfd), recorded during the tap sequences, with the ensemble average,
〈E〉(βconf ), over the distribution equation (2). With this aim we have independently calculated
the ensemble average 〈E〉, as a function of βconf . Figure 4 (see also figure 3) shows a very
good agreement between 〈E〉(βconf) and E(βfd) (notice that there are no adjustable parameters).
Such an agreement was found for all the observables we considered [11]. In figure 4 (inset)
we also show the dependence of the configurational temperature Tconf on the parameters of the
tap dynamics T� and τ0. Finally, we mention that we have also successfully tested Edwards’
scenario in another model, the ‘frustrated lattice gas’ [33, 11], a system in the category of spin
glasses.

3.3. The properties of the compaction ‘tap’ dynamics

The MC tap dynamics exhibits a rich structure in agreement with experimental findings [5, 7].
The system is prepared in an initial loose configuration and then tapped. Under tapping its
density tends to increase as a function of the number of shakes, in a stretched exponential
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Figure 5. Main frame: the density correlation function in the TTI regime, q(t) ≡ C(t), as a
function of the number of taps, t , for several values of T� , in a hard-sphere lattice model [37].
Inset: the characteristic relaxation time (in units of number of ‘taps’) as a function of the shaking
amplitude T� . A Vogel–Fulcher function, with a divergency at TK = 0.29, fits the data (continuous
line).

way at comparatively high T� [11] and in a logarithmic way at small T� [8]. This is in close
correspondence with experimental findings from the Chicago [5] and Rennes [7] groups. At
small amplitudes, ‘irreversibility’ [5, 8] and ‘ageing’ phenomena along with huge relaxation
times diverging á la Arrhenius or Vogel and Fulcher [5–7] are found in these systems, similarly
to glass formers in the freezing region.

It is interesting to consider density correlation functions such as C(t, tw) =
B(t, tw)/B(tw, tw), where B(t, tw) = ∑

i [〈ni (t + tw)ni (tw)〉 − 〈ni (t + tw)〉〈ni (tw)〉]. In the
high T� region, C(t, tw) has a time translation invariant (TTI) behaviour, i.e., C(t, tw) = C(t)
(see the inset of figure 5). Asymptotically, C(t) can be well fitted by stretched exponentials:
C(t) = C0 exp[−(t/τ)β] (here β is not the ‘temperature’, but just the stretching exponent of
the exponential). The exponent β becomes significantly lower than unity at low amplitudes.
The above fit defines the relaxation time τ (T�) (see figure 5): the growth of τ by decreasing
T� is well approximated by an Arrhenius or Vogel–Tamman–Fulcher law (as earlier found
in [8, 11]), resembling the slowing down of glass formers close to the glass transition, a result
also recently experimentally reported in granular media [6, 7]: τ 
 τ0 exp[E0/(T�−T K

� )]. The
divergence point, T K

� (which in simulations is difficult to precisely locate and here consistent
with zero), of τ is interpreted as the numerical location of the point of dynamical arrest of
the system, where an ‘ideal’ transition to a glassy phase occurs. By quenching the system at
low values of T�, the TTI character of relaxation is lost and logarithmic ageing behaviours, as
stated, are found. For slow quenches the hard-sphere model is able, anyway, to attain its crystal
phase. The precise nature of the ‘glassy’ region, very difficult to numerically determine, is
analytically investigated in the following sections.

3.4. Hard-sphere binary mixtures under gravity

In order to test the statistical mechanics approach in a more complicated system and to study
segregation mechanisms, we also considered a hard-sphere binary system made of two species
1 (small) and 2 (large) with grain diameters a0 and

√
2a0, under gravity on a cubic lattice

of spacing a0 = 1. We set the units such that the two kinds of grain have masses m1 = 1
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Figure 6. Main frame: the difference of the average heights of small and large grains, �h = h1−h2,
measured at stationarity in the binary hard-sphere mixture under gravity, is plotted as a function of
tap amplitude, T� (in units mga0). The three sets of points correspond to the shown tap durations,
τ0. At high T� larger grains are found above the smaller, i.e., �h < 0, as in the Brazil nut effect
(BNE). Below a T ∗

� (τ0) the opposite is found (reverse Brazil nut effect, RBNE). Inset: the �h data
of the main frame are plotted as a function of the corresponding average energy, e. The three sets
of data do not collapse, as before, onto a single master function.

and m2 = 2m1, and gravity acceleration is g = 1. The hard-core potential HHC is such that
two large nearest-neighbour particles cannot overlap. This implies that only couples of small
particles can be nearest neighbours on the lattice. The system overall Hamiltonian is

H = HHC + m1gH1 + m2gH2, (8)

where H1 = ∑(1)
i zi and H2 = ∑(2)

i zi , the height of site i is zi and the two sums are over
all particles of species 1 and 2, respectively. In the above units, the gravitational energies in a
given configuration are thus E1 = H1 and E2 = 2H2.

As before, grains are confined in a box of linear size L with periodic boundary conditions
in the horizontal directions and initially prepared in a random loose stable pack. Under the
tap dynamics the system approaches a stationary state for each value of the tap parameters T�

and τ0 used. In figure 6, we plot as a function of T� (for several values of τ0) the asymptotic
value of the vertical segregation parameter, i.e., the difference of the average heights of the
small and large grains at stationarity, �h(T�, τ0) ≡ h1 − h2. Here h1 and h2 are the averages
of H1/N1 and H2/N2 over the tap dynamics at stationarity. Figure 6 shows that the Brazil
nut effect (BNE, large grains above) is observed at high T�, and the reverse BNE at smaller
T� . Before discussing segregation mechanisms, we want to check the statistical mechanics
scenario described in the previous sections.

The results given in the main panel of figure 6 apparently show that T� is not the right
thermodynamic parameter, since sequences of taps with different τ0 give different values for the
system observables. However, if the stationary states corresponding to different tap dynamics
(i.e., different T� and τ0) are indeed characterized by a single thermodynamic parameter, as in
the monodisperse case above, the curves of figure 6 should collapse onto a universal master
function when �h(T�, τ0) is parametrically plotted as a function of an other macroscopic
observable such as the average energy, e(T�, τ0) = (E1 + E2)/N (N is the total number of
particles). This collapse of data is not observed here, as is apparent in the inset of figure 6. We
found, instead [11], that two macroscopic quantities can be sufficient to characterize uniquely
the stationary state of the system. These two quantities are, for instance, the energy e and the
height difference �h. Of course since e = ah1 + 2bh2 (where a = N1/N and b = N2/N) and
�h = h1 − h2, we can also choose h1 and h2 to characterize the stationary state. Namely, we



Statistical mechanics of dense granular media S2565

1.0 1.2 1.4 1.6
h2

0.06

0.08

0.10

2b

Ens. Aver.
0=1
0=10
0=50

1.2 1.4 1.6 1.8
e

0.3

0.4

0.5

N
c

Figure 7. Main frame: the average density of large grains on the box bottom layer, ρb
2 , measured

at stationarity for different T� and τ0, scales almost on a single master function when plotted as a
function of the large grain height, h2. Upper inset: the average number of contacts between large
grains per particle, Nc, obtained for different T� and τ0, scale on a single master function when
plotted as a function of the system energy, e.

found that a generic macroscopic quantity A, averaged over the tap dynamics in the stationary
state, is only dependent on h1 and h2, i.e., A = A(h1, h2). We have checked that this is
the case for several independent observables, such as the number of contacts between large
particles, Nc, the density of small and large particles on the bottom layer, ρb

1 and ρb
2 , and others,

as shown in figure 7. Therefore, we need both h1 and h2 to characterize unambiguously the
state of the system; namely, all the observables assume the same values in a stationary state
characterized by the same values of h1 and h2, independently of the previous history (i.e., in
our case independently of the particular tapping parameters T� and τ0).

These findings imply that an extension of Edwards’ original approach is required, where at
least two thermodynamic parameters have to be included [11]. As before, this can be obtained
by assuming that the microscopic distribution is given by the principle of maximum entropy
with the constraint that the average gravitational energies of the two species E1 = ∑

r Pr E1r

and E2 = ∑
r Pr E2r are independently fixed. This gives two Lagrange multipliers:

β1 = ∂ ln �(E1, E2)

∂ E1
β2 = ∂ ln �(E1, E2)

∂ E2
(9)

where �(E1, E2) is the number of inherent states with E1,E2.
The hypothesis that the ensemble distribution at stationarity is the above can be tested as

we have already previously shown. We have to check that the time average of any quantity,
A(h1, h2), as recorded during the tap sequences in a stationary state characterized by given
values h1 and h2, coincides with the ensemble average, 〈A〉(h1, h2), over the generalized
version of distribution equation (2). With this aim, we have independently calculated the
ensemble averages 〈Nc〉, 〈ρb

2 〉, 〈ρb
1〉 for different values of β1 and β2; we have expressed

parametrically 〈Nc〉, 〈ρb
2 〉, 〈ρb

1 〉, as a function of the average of h1 and h2, and compared them
with the corresponding quantities, Nc, ρb

1 and ρb
2 , averaged over the tap dynamics. The two

sets of data are plotted in figure 7 showing a good agreement (notice that there are no adjustable
parameters). Figure 8 shows the two configurational temperatures T1 ≡ β−1

1 and T2 ≡ β−1
2 as

a function of the tap amplitude, T� .
Equation (9) shows that there are two distinct Lagrange multipliers, constraining

independently the energy of the two species. A consequence of this fact is that in this
approach, where the total energy is not constrained, the zero principle of thermodynamics
does not necessarily hold. Indeed, only if the total energy E1 + E2 could be somehow kept
constant, would one obtain by maximizing the entropy β1 = β2.



S2566 A Coniglio et al

Figure 8. The configurational temperatures T1 ≡ β−1
1 (circles) and T2 ≡ β−1

2 (stars) as a function
of the tap amplitude, T� , for a tap duration τ0 = 10 MCS. The straight line is line y = x .

4. A mean field theory of the phase diagram of granular media

We have seen that even though granular media may form crystalline packings, in most cases
they are found at rest in disordered configurations, characterized by ‘fluid’-like distribution
functions. Gently shaken granular media exhibit a strong form of ‘jamming’ [5–7], i.e., an
exceedingly slow dynamics, which shows deep connections to ‘freezing’ phenomena observed
in many thermal systems such as glass formers [8, 9].

An interesting result reported above is that in at least some schematic hard-sphere models,
a statistical mechanics description of granular media appears to be well grounded. This allows
us to evaluate the ‘granular’ partition function, Z , of equation (4) in order to derive the system
phase diagram. This was accomplished for a monodisperse system, at a mean field level,
in [34]. In an approximation á la Bethe–Peierls, we consider a system of hard spheres with a
Hamiltonian given in equation (7) plus a chemical potential term to control the overall density.
We adopt here a simple definition of ‘mechanical stability’: a grain is ‘stable’ if it has a grain
underneath. The operator �r thus has a simple expression: �r = limK→∞ exp{−KHEdw}
where HEdw = ∑

i δni (z),1δni (z−1),0δni(z−2),0 (for clarity, we have shown the z dependence in
ni (z)).

By using the Bethe–Peierls approximation with the techniques of the ‘cavity method’ [3],
the phase diagram is found [34]. At low Ns (Ns is the number of grains per unit surface) or
high Tconf a fluid-like phase is found, characterized by a homogeneous replica symmetric (RS)
solution, in which only one pure state exists and the local fields are the same for all the sites of
the lattice (translational invariance). For a given Ns, by lowering Tconf (see figures 9 and 10), a
phase transition to a crystal phase (an RS solution with no space translation invariance) is found
at Tm. Notice that the fluid phase still exists below Tm as a metastable phase corresponding to
a supercooled fluid found when crystallization is avoided.

Within the one-step replica symmetry breaking (1RSB) ansatz of the cavity method [3],
a non-trivial solution appears for the first time at a given temperature TD(Ns), signalling the
existence of an exponentially high number of pure states. In mean field theory TD is interpreted
as the location of a purely dynamical transition as in mode-coupling theory,but in real systems it
might just correspond to a crossover in the dynamics (see [24, 12, 35] and references therein).
The 1RSB solution becomes stable at a lower point TK, where a thermodynamic transition
from the supercooled fluid to a 1RSB glassy phase takes place (see figure 9) in a scenario á la
Kauzmann with a vanishing complexity of pure states (which stays finite for TK < T < TD).
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Figure 9. The system mean field phase diagram is plotted in the plane of its two control parameters
(Tconf , Ns): Tconf is Edwards’ ‘configurational temperature’ and Ns the average number of grains
per unit surface in the box. At low Ns or high Tconf , the system is found in a fluid phase. The
fluid forms a crystal below a melting transition line Tm(Ns). When crystallization is avoided, the
‘supercooled’ (i.e., metastable) fluid has a thermodynamic phase transition, at a point TK(Ns), to
a replica symmetry breaking ‘glassy’ phase with the same structure found in mean field theory
of glass formers. In between Tm(Ns) and TK(Ns) a dynamical freezing point, TD(Ns), is located,
where the system characteristic timescales diverge.
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Figure 10. For a system with a given number of grains (i.e., a given Ns), the overall number density,
� ≡ Ns/2〈z〉 (〈z〉 is the average height), calculated in the mean field approximation, is plotted as a
function of Tconf ; �(Tconf) has a shape very similar to the one observed in the ‘reversible regime’
of tap experiments and MC simulations of the cubic lattice model for �(T�). The location of the
glass transition, TK (filled circle), corresponds to a cusp in the function �(Tconf). The passage
from the fluid to supercooled fluid is Tm (filled square). The dynamical crossover point TD is
found around the flex of �(Tconf) and corresponds well to the position of a characteristic shaking
amplitude�∗ found in experiments and simulations where the ‘irreversible’ and ‘reversible’ regimes
approximately meet.

The results of these calculations, summarized in the phase diagram of figure 9, are further
illustrated in figure 10: in a system with a given number of grains (i.e., a given Ns), the overall
number density, �, is plotted as a function of Tconf (here by definition � ≡ Ns/2〈z〉, where 〈z〉
is the average height). The shown curve, �(Tconf), is the equilibrium function calculated here.
It has a shape very similar to the one observed in tap experiments [5, 7], or in MC simulations
on the cubic lattice (see also [8]), where the density is plotted as a function of the shaking
amplitude � (along the so called ‘reversible branch’). In particular, a comparison of our mean
field results with simulations of the 3D model of hard spheres under the tap dynamics shows
a very good agreement.
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Summarizing, in the present mean field scenario of a granular medium with Ns particles
per surface, in general, at high Tconf (i.e. high shaking amplitudes) a fluid phase is located
(see figure 9). By lowering Tconf , a phase transition to a crystal phase is found at Tm.
However, when crystallization is avoided, the fluid phase still exists below Tm as a metastable
phase corresponding to a supercooled fluid. At a lower point, TD, an exponentially high
number of new metastable states appears, interpreted, at a mean field level, as the location
of a purely dynamical transition, which in a real system is thought to correspond just to a
dynamical crossover. Finally, at an even lower point, TK, the supercooled fluid has a genuinely
thermodynamic discontinuous phase transition to the glassy state. The structure of the glass
transition of the present model for granular media, obtained in the framework of Edwards’
theory, is the same as found in the glass transition of the p-spin glass and in other mean field
models for glass formers [24, 12].

4.1. A mean field theory of segregation

As an application of the statistical mechanics of powder mixtures just discussed, we now
consider the intriguing phenomenon of segregation: in the presence of shaking a granular
system is not randomized, but its components tend to separate [14]. An example is the so
called ‘Brazil nut’ effect (BNE), where, under shaking, large particles rise to the top and small
particles move to the bottom of the container. Interestingly, by changing grain sizes, mass
ratio or shaking amplitudes a crossover towards a ‘reverse Brazil nut’ effect (RBNE) was more
recently discovered [19] where small particles segregates to the top and large particles to the
bottom (see figure 6). Several mechanisms have been proposed to explain these phenomena
which, although of deep practical and conceptual relevance, are still largely unknown [14].
Geometric effects, such as ‘percolation’ [15] or ‘reorganization’ [16, 17], are known to be
at work since, in a nutshell, small grains appear to filter beneath large ones. ‘Dynamical’
effects, such as convection [18] or inertia [20], were shown to play a role as well. Recent
simulations and experiments have, however, outlined that segregation phenomena can involve
‘global’ mechanisms, such as ‘condensation’ [19] or, more generally, ‘phase separation’ [21].
We focus on these properties here.

We apply the mean field approximation of section 4 to the present binary mixture to
give a statistical mechanics interpretation of segregation phenomena observed in the model
of equation (8) and in the simulations of figure 6 (see also [36]). With the Bethe–Peierls
methods the free energy, F , can be derived [36] along with the quantities of interest,
such as the density profile of small and large grains, ρ1(z) and ρ2(z), and average heights
hn = 〈zn〉 = ∑

z zρn(z)/
∑

z ρn(z) (with n = 1, 2). The system parameters (for a given
grain size ratio) are four: the two number densities per unit surface, N1 and N2, and the two
configurational temperatures, or more precisely m1β1 and m2β2 (conjugated to gravitational
energies). In the space of these parameters, the fluid phase corresponds to a solution of Bethe–
Peierls equations where the density field in each layer is invariant under horizontal translations.
A crystalline phase, characterized by the breakdown of the translational invariance (density
fields are now different on neighbouring sites), is also found.

The typical system phase diagram in 3D is shown in figure 11 in the plane (N1, N2), i.e.,
densities per unit surface of species 1 and 2, in the case where m1β1 > m2β2. There are pure
fluid and crystal phases, whose extension depends on m1β1 and m2β2 (they shrink as m1β1

and m2β2 increase). For clarity, figure 11 does not shows the metastable fluid phases of the
system discussed in the previous section: a ‘supercooled fluid’, i.e., a fluid with a free energy
higher than the crystal, and a glass. Since nucleation times can in practice be very long (and
enhanced by a degree of polydispersity), crystallization can be avoided in granular media and
the metastable fluid observed indeed.
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Figure 11. Mean field phase diagram of a 3D binary system under gravity, treated á la Edwards, in
the density plane (N1, N2) for m1β1 = 1 and m2β2 = 1/2, where β1 and m1 (respectively β2 and
m2) are the inverse configurational temperature and the mass of small grains (respectively large
grains). A pure fluid and crystal phase are present. In the region marked ‘Crystal & Fluid’, a new
state is found where the system, due to gravity, is vertically separated in a fluid and a crystal phase.
Here the crystal, rich in large grains, is resting on a fluid bed, rich in small grains. This is a phase
separation induced segregation, in a BNE configuration, visualized in the right inset: showing the
density profiles of the two species, ρ1(z) and ρ2(z) (respectively filled and empty circles), as a
function of the vertical coordinate z, at a typical point of the ‘Crystal & Fluid’ region with N1 = 3,
N2 = 4. The reverse, i.e., RBNE with the fluid floating above the crystal, can be found when
m1β1 < m2β2. For comparison in the left inset we show ρ1(z) and ρ2(z) at a point of the crystal
phase with N1 = 0.3, N2 = 4: small grains are here interspersed with large ones even though,
on average, slightly below. This illustrates that within a pure phase gravity and ‘geometry’ effects
can also drive a different form of segregation, not associated with phase separation. For clarity,
metastable phases are not shown in this phase diagram.

In the region marked ‘Crystal & Fluid’, a new absolute minimum of the free energy, F ,
is found, corresponding to a state where the system, due to gravity, is vertically separated in
a fluid and a crystal phase. The presence of gravity breaks the ‘up–down’ symmetry and, for
instance, in the ‘Crystal & Fluid’ region of figure 11 where m1β1 > m2β2, the crystal phase,
rich in large grains, moves to the top and a clear cut BNE is found (as RBNE is observed in the
opposite case, when m1β1 < m2β2). This is a phase separation induced segregation, where
the two phases are divided by a sharp interface. The right inset of figure 11 plots the density
profiles which, in this region, show a clear separation of the two coexisting phases.

Due to the symmetry breaking gravity field, in 3D no coarsening phenomena are usually
associated with segregation. Coarsening is expected to appear when both the phase densities
and the configurational temperatures get close, a phenomenon which could be tested by
experiments or simulations.

Opposed to the above phase separation driven segregation, within the pure fluid and crystal
phases one can also observe mixing or a simpler form of vertical segregation. This is shown,
at a typical point of the crystal phase, by the species density profiles plotted in the left inset
of figure 11: small grains are essentially mixed with large ones, even though, on average,
slightly below. For a given ratio m1β1/m2β2, this form of segregation is generated by simple
‘buoyancy’ and ‘geometrical’ (also named ‘percolation’ [15]) mechanisms: for instance, in
the left inset of figure 11 where m1β1 > m2β2, gravity tends to favour the rise of large grains
as more mechanically stable states can be found with small grains at the bottom or, stated
differently, small grains can more easily filter beneath larger ones to find stable states. Thus,
in general, for a given grain size ratio, an interplay of mass densities and configurational
temperatures difference drives the phases vertical positioning.
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Figure 12. Main panel: the vertical segregation parameter �h/h is plotted as a function of
δ = (m2 −2m1)/(m2 +2m1) in a binary granular system in its fluid phase in the case β1 = β2 = 1.
For a given number of large grains, N2 = 1, when N1 = 1 by reducing δ the system smoothly
crosses from BNE to RBNE, via a mixing region located around δ = 0 where �h/h ∼ 0. When
small grains are comparatively more abundant, N1 = 1.8, the region where �h/h ∼ 0 disappears
and around a critical value δc �= 0 the system has an abrupt transition from BNE to RBNE. Side
panels: the density profiles ρ(z) of the two species are plotted for δ = ±1. Full (empty) circles
correspond to small (large) grain density.

In order to illustrate further these effects, for simplicity, we consider now only the system
fluid phase and we take the case β1 = β2 = 1. The segregation status of the system changes
by changing the mass ratio parameter δ = (2m1 − m2)/(2m1 + m2): when δ � 0 the BNE
is expected to be found, as well as the RBNE when δ � 0. This is indeed the case, as
shown in the main panel of figure 12 which plots the usual vertical segregation parameter
�h/h ≡ 2(h1 − h2)/(h1 + h2) as a function of δ (here h1 and h2 are the average heights of
small and large grains). For a given number of large grains, N2 = 1, in the case where there are
comparatively few small grains, e.g., N1 = 1, by reducing δ the system smoothly crosses from
BNE to RBNE, via a mixing region located around δ = 0 where �h/h ∼ 0 (see figure 12).
When small grains are comparatively abundant, e.g., N1 = 1.8, the scenario drastically
changes for the enhanced role of depletion forces acting between large grains: the region where
�h/h ∼ 0 disappears and around a critical value δc �= 0 the system has an abrupt transition
from BNE to RBNE. The jump observed in �h/h is related to the crossing of a phase transition
line present in the fluid phase (this is due to depletion forces between large grains and is, in fact,
absent if grains have equal radii). In order to compare the properties of the system microscopic
configurations, figure 12 also plots the density profiles ρ(z) of the two species for δ = ±1.

Summarizing, the present mean field statistical mechanics model of a granular binary
mixture, here analytically treated á la Edwards, individuates two basic mechanisms underlying,
in the absence of hydrodynamic modes, mixing and segregation phenomena corresponding to
a variety of experimentally observed effects, ranging from BNE [14] and RBNE [19, 38] to
coarsening [21]. In these non-thermal media there is a form of segregation which is related to
thermodynamic-like mechanisms taking place in the system, i.e., phase transitions. A different
kind of segregation phenomena exists, not associated with phase transitions, which is driven
in pure phases by ‘buoyancy’ and ‘geometric’ effects.

5. Conclusions

An important open issue in the physics of granular media is the theoretical foundation and
experimental test of statistical mechanics approaches and, in particular, the approach proposed
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by Edwards and here briefly reviewed. In practice, the general validity of Edwards’ scenario
has just begun to be assessed and there are still many, crucial, open questions [2]. Within the
schematic framework of simple hard-sphere models, we have shown that such an approach
to dense granular media appears to be well grounded, and a first framework is emerging to
understand their physics and their deep connections with thermal systems such as fluids and
glass formers.

We have shown that the system stationary states are indeed independent of the sample
history as in a ‘thermodynamics’ system, and can be described in terms of a distribution
function characterized by a few control parameters (such as configurational temperatures).
We then derived, by analytical calculations at a mean field level, the phase diagram of these
systems. In particular, we discovered that ‘jamming’ corresponds to a phase transition from a
‘fluid’ to a ‘glassy’ phase, observed when crystallization is avoided. Interestingly, the nature of
such a ‘glassy’ phase turns out to be the same as found in mean field models for glass formers.
In the same framework, we have also discussed segregation patterns observed in hard-sphere
binary systems, where Edwards’ original approach must be extended. Here, the presence of
fluid–crystal phase transitions in the system drives segregation as a form of phase separation.
Within a given phase, gravity can also induce a kind of ‘vertical’ segregation, not associated
with phase transitions.

As a first reference picture is emerging in the physics of dense granular media, a deeper
test of these theories and their consequences, the experimental determination of the described
phase diagram and segregation features and the connections to hydrodynamics effects are
among relevant open research directions ahead in this field.
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